A simple opening/closing spiral going upwards
This commit is contained in:
parent
b8fef3fd76
commit
9f0cbfcecc
80
Main.hs
80
Main.hs
@ -12,7 +12,8 @@ type Length = Int -- ^ The length of an line segment
|
||||
type X = Int
|
||||
type Y = Int
|
||||
type Z = Int
|
||||
type Point = (X, Y, Z)
|
||||
type Point2D = (X, Y)
|
||||
type Point3D = (X, Y, Z)
|
||||
|
||||
area :: Int -> Int
|
||||
area a = a * a
|
||||
@ -20,68 +21,53 @@ area a = a * a
|
||||
cube :: Int -> Int
|
||||
cube a = a * a * a
|
||||
|
||||
layer :: Cell -> Layer
|
||||
layer c = integerCubeRoot c `div` 2
|
||||
|
||||
ring :: Cell -> Ring
|
||||
ring o = integerSquareRoot o `div` 2
|
||||
|
||||
edge :: Layer -> Length
|
||||
edge l = 2 * l + 2
|
||||
|
||||
-- | Offset of a cell within its layer
|
||||
lOffset :: Cell -> Cell
|
||||
lOffset c = c - cube (edge $ layer c - 1)
|
||||
atZ :: Z -> Point2D -> Point3D
|
||||
atZ z (x, y) = (x, y, z)
|
||||
|
||||
-- | Offset of a cell in a layer within its spiral ring
|
||||
rOffset :: Cell -> Cell
|
||||
rOffset o = o - area (edge $ ring o - 1)
|
||||
reflectY :: Point2D -> Point2D
|
||||
reflectY (x, y) = (x, -y - 1)
|
||||
|
||||
location :: Cell -> Point
|
||||
location c | o < a = locationOnTop (e `div` 2 - 1) o
|
||||
| o < a + (e - 2) * (e - 1) * 4 = locationAround c
|
||||
| otherwise = locationOnBottom ((-e) `div` 2) c (o - a - (e - 2) * (e - 1) * 4)
|
||||
where o = lOffset c -- ^ offset within the current layer
|
||||
l = layer c -- ^ the current layer
|
||||
e = edge l -- ^ the length of the edge of the current layer
|
||||
a = area e -- ^ the area of a side of the current layer
|
||||
reflectX :: Point2D -> Point2D
|
||||
reflectX (x, y) = (-x - 1, y)
|
||||
|
||||
locationOnTop :: Z -> Cell -> Point
|
||||
locationOnTop z o | o == 0 = (0, 0, z)
|
||||
| ro < e - 1 = (r, ro - r, z) -- 64
|
||||
| ro < 2 * e - 2 = (3 * r - ro, r, z)
|
||||
| ro < 3 * e - 3 = (0 - r - 1, 5 * r - ro + 1, z)
|
||||
| otherwise = (ro - 7 * r - 3, 0 - r - 1, z)
|
||||
where r = ring o -- ^ the current spiral ring
|
||||
ro = rOffset o -- ^ offset within this ring
|
||||
e = edge r -- ^ edge of the this ring
|
||||
rotate :: Length -> Point2D -> Point2D
|
||||
rotate l (x, y) = (-y - 1, -x - 1)
|
||||
|
||||
locationAround :: Cell -> Point
|
||||
locationAround c | o <= r = (l - r + o, 0 - l - 1, l - r - 1)
|
||||
| o <= r + e - 1 = (l, 0 - l - 1 + o - r, l - r - 1)
|
||||
| o <= r + 2 * e - 2 = (l - o + r + e - 1, l, l - r - 1)
|
||||
| o <= r + 3 * e - 3 = (0 - l - 1, l - o + r + 2 * e - 2, l - r - 1)
|
||||
| otherwise = (0 - l - 1 + o - r - 3 * e + 3, 0 - l - 1, l - r - 1)
|
||||
where l = layer c
|
||||
e = edge l
|
||||
s = lOffset c - area e -- ^ offset since starting the sides of the cude
|
||||
r = s `div` (4 * e - 4) -- ^ revolutions since starting on the side
|
||||
o = s - (4 * e - 4) * r -- ^ offset within this revolution
|
||||
location :: Length -> Cell -> Point3D
|
||||
location l c = atZ h $ case h `mod` 4 of
|
||||
0 -> growingSpiral l o
|
||||
1 -> rotate l $ shrinkingSpiral l o
|
||||
2 -> reflectX . reflectY $ growingSpiral l o
|
||||
3 -> reflectX . reflectY . rotate l $ shrinkingSpiral l o
|
||||
where h = c `div` area l
|
||||
o = c - h * area l
|
||||
z = h - l `div` 2 - 1
|
||||
|
||||
locationOnBottom :: Z -> Cell -> Cell -> Point
|
||||
locationOnBottom z c b | False = (r, r, z)
|
||||
| otherwise = (3, -3, z)
|
||||
where l = layer c
|
||||
r = integerSquareRoot (area (edge l) - b - 1) `div` 2 -- ^ the current spiral ring
|
||||
growingSpiral :: Length -> Cell -> Point2D
|
||||
growingSpiral l o | o == 0 = (0, 0)
|
||||
| ro < e - 1 = (r, ro - r) -- 64
|
||||
| ro < 2 * e - 2 = (3 * r - ro, r)
|
||||
| ro < 3 * e - 3 = (0 - r - 1, 5 * r - ro + 1)
|
||||
| otherwise = (ro - 7 * r - 3, 0 - r - 1)
|
||||
where r = ring o -- ^ the current spiral ring
|
||||
ro = o - area (edge $ r - 1) -- ^ offset within this ring
|
||||
e = edge r -- ^ edge of the this ring
|
||||
|
||||
shrinkingSpiral :: Length -> Cell -> Point2D
|
||||
shrinkingSpiral l o = growingSpiral l (area l - o - 1)
|
||||
|
||||
asMatrix :: Length -> [[[Cell]]]
|
||||
asMatrix e = foldl (\c (i, x, y, z) -> replace c z $ replace (c!!z) y $ replace (c!!z!!y) x i)
|
||||
(replicate e $ replicate e $ replicate e (-1))
|
||||
[ (i, x + div e 2, y + div e 2, z + div e 2)
|
||||
[ (i, x + div e 2, y + div e 2, z)
|
||||
| i <- [0..cube e - 1]
|
||||
, let (x, y, z) = location i
|
||||
-- , x + div e 2 >= 0, y + div e 2 >= 0, z + div e 2 >= 0
|
||||
-- , x < div e 2, y < div e 2, z < div e 2
|
||||
, let (x, y, z) = location e i
|
||||
]
|
||||
where replace :: [a] -> Int -> a -> [a]
|
||||
replace l i e = take i l ++ [e] ++ drop (i+1) l
|
||||
|
Loading…
Reference in New Issue
Block a user