rdos/host/asm.awk

507 lines
11 KiB
Awk
Raw Normal View History

#!/usr/bin/awk -f
BEGIN {
if (!of) of="lst"
pos=0
errors=0
# lookup table for ord()
for (i = 32; i <= 128; i++) {
t=sprintf("%c", i)
_ord_[t]=i
}
# 8-bit general purpose registers
r8["al"]=0
r8["cl"]=1
r8["dl"]=2
r8["bl"]=3
r8["ah"]=4
r8["ch"]=5
r8["dh"]=6
r8["bh"]=7
# 16-bit general purpose registers
r16["ax"]=0
r16["cx"]=1
r16["dx"]=2
r16["bx"]=3
r16["sp"]=4
r16["bp"]=5
r16["si"]=6
r16["di"]=7
# segment registers
sreg["es"]=0
sreg["cs"]=1
sreg["ss"]=2
sreg["ds"]=3
# indirect access register combinations
modstr["bxsi"]=0
modstr["sibx"]=0
modstr["bxdi"]=1
modstr["dibx"]=1
modstr["bpsi"]=2
modstr["sibp"]=2
modstr["bpdi"]=3
modstr["dibp"]=3
modstr["si"]=4
modstr["di"]=5
modstr["bp"]=6
modstr["bx"]=7
# ALU operations
alu["add"]=0
alu["or"]=1
alu["adc"]=2
alu["sbb"]=3
alu["and"]=4
alu["sub"]=5
alu["xor"]=6
alu["cmp"]=7
# near conditional jumps
ops_rel8["jo"]=112+0
ops_rel8["jno"]=112+1
ops_rel8["jb"]=112+2
ops_rel8["jc"]=112+2
ops_rel8["jnae"]=112+2
ops_rel8["jae"]=112+3
ops_rel8["jnb"]=112+3
ops_rel8["jnc"]=112+3
ops_rel8["je"]=112+4
ops_rel8["jz"]=112+4
ops_rel8["jne"]=112+5
ops_rel8["jnz"]=112+5
ops_rel8["jbe"]=112+6
ops_rel8["jna"]=112+6
ops_rel8["ja"]=112+7
ops_rel8["jnbe"]=112+7
ops_rel8["js"]=112+8
ops_rel8["jns"]=112+9
ops_rel8["jp"]=112+10
ops_rel8["jpe"]=112+10
ops_rel8["jnp"]=112+11
ops_rel8["jpo"]=112+11
ops_rel8["jl"]=112+12
ops_rel8["jnge"]=112+12
ops_rel8["jge"]=112+13
ops_rel8["jbl"]=112+13
ops_rel8["jle"]=112+14
ops_rel8["jng"]=112+14
ops_rel8["jg"]=112+15
ops_rel8["jnle"]=112+15
ops_rel8["loopne"]=224
ops_rel8["loopnz"]=224
ops_rel8["loope"]=225
ops_rel8["loopz"]=225
ops_rel8["loop"]=226
ops_rel8["jmp"]=235
# single-byte opcodes without operands
ops_sb["nop"]=128+16
ops_sb["movsb"]=164
ops_sb["movsw"]=165
ops_sb["stosb"]=170
ops_sb["stosw"]=171
ops_sb["lodsb"]=172
ops_sb["lodsw"]=173
ops_sb["ret"]=195
ops_sb["retf"]=203
ops_sb["hlt"]=244
# prefix instructions
prefix["es"]=38
prefix["cs"]=46
prefix["ss"]=54
prefix["ds"]=64
prefix["lock"]=240
prefix["rep"]=243
prefix["repe"]=242
prefix["repz"]=242
prefix["repne"]=243
prefix["repnz"]=243
}
# error string to insert into listing
function err(str) {
errors++
if (of=="lst") printf("**** %s\n", str)
}
# submit a assembling result to output
# set label of current line to off
# this outputs a listing line
function submit(off) {
if (of=="lst") printf("%04X %-18s %s\n", off, hex, $0)
if (of=="hex" && hex) printf("%s", hex)
if (label) {
if (of=="sym") printf("%s\tsym\t%d\n", label, off)
if (label in prevsym && prevsym[label]!=off) {
err("label " label " different during second pass, was " prevsym[label] ", now " off)
}
sym[label]=off
}
pos=pos+length(hex)/2
hex=""
}
# evaluate an expression
# globals set:
# ecrit: value known after first pass, 1=yes, 0=no
# eregs: concatenated list of registers that add to this expr (for modrm)
function expr(str) {
val=0
sign=1
ecrit=1
eregs=""
gsub(/-/, "+-", str)
split(str, ep,"+")
for (k in ep) {
if (substr(ep[k],1,1)=="-") {
gsub(/^-/, "", ep[k])
sign = -1
} else {
sign = 1
}
if (substr(ep[k],1,1)==".") ep[k] = plabel ep[k]
if (ep[k] in r8 || ep[k] in r16 || ep[k] in sreg) {
if (sign > 0) {
eregs=eregs ep[k]
} else {
err("Registers cannot be subtractive in expressions")
}
} else if (match(ep[k], /^[0-9]/)) {
if (match(ep[k], /h$/)) {
ep[i]="0x" ep[k]
}
val = val + sign*int(ep[k])
} else if (ep[k] in sym) {
val = val + sign*sym[ep[k]]
} else if (ep[k] in prevsym) {
val = val + sign*prevsym[ep[k]]
ecrit=0
} else {
err("Undefined label " ep[k])
ecrit=0
}
}
return val
}
function imm(str) {
val = expr(str)
if (eregs) err("Registers not allowed here")
return val
}
function crit(str) {
val = imm(str)
if (!ecrit) err("Labels from below not allowed here")
return val
}
function push_byte(val) {
#print("; pushb " val)
if (val<0 || val>=256) err("Value " val " does not fit in byte")
hex=hex sprintf("%02X",val)
}
function push_signed_byte(val) {
while (val < 0) val = val + 256
push_byte(val)
}
function push_word(val) {
while (val<0) val=val+65536
t=sprintf("%04X",val)
hex=hex substr(t,3) substr(t,1,2)
}
# rs is the register set (r8, r16) that can show up in str
function push_modrm(str, spare, rs) {
mod=0
rm=0
if (str in rs) {
mod=3
rm=rs[str]
} else if (substr(str,1,1)=="[") {
gsub(/^\[|\]$/, "", str)
disp=expr(str)
if (!ecrit || disp) {
mod=2
}
if (!eregs) {
mod=0
rm=6
} else if (eregs in modstr) {
rm=modstr[eregs]
# [BP] is unencodable, this combination is read as [0000]
# so we upgrade [BP] to [BP+00]
if (mod==0 && rm==6) {
mod=1
}
} else {
err("Bad modR/M")
}
}
#print("; modR/M:", mod, spare, rm)
push_byte(mod*64+spare*8+rm)
if (mod == 1) {
push_byte(disp)
} else if (mod == 2 || (mod == 0 && rm == 6)) {
push_word(disp)
}
}
# common encoding: two operands, one is modrm, other is register via spare field
# last two bits of opcode specify width (byte/word) and whether modrm operand is first or second
function push_op_modrm(opcode) {
if (rm1 && byteop && op2 in r8) {
push_byte(opcode)
push_modrm(op1, r8[op2], r8)
} else if (rm1 && wordop && op2 in r16) {
push_byte(opcode+1)
push_modrm(op1, r16[op2], r16)
} else if (rm2 && byteop && op1 in r8) {
push_byte(opcode+2)
push_modrm(op2, r8[op1], r8)
} else if (rm2 && wordop && op1 in r16) {
push_byte(opcode+2+1)
push_modrm(op2, r16[op1], r16)
}
}
# common encoding: one operand encoded as modrm with fixed spare field
# operand can be byte or word, encoded in last bit of opcode
function push_op_fixed_spare(opcode, spare) {
if (byteop) {
push_byte(opcode)
push_modrm(op1, spare, r8)
return 1
} else if (wordop) {
push_byte(opcode+1)
push_modrm(op1, spare, r16)
return 2
}
return 0
}
# dont process empty lines or comment lines
/^( |\t)*(;|%)/ || /^( |\t)*$/ {
if (of=="lst") printf("%24s%s\n","",$0)
next
}
# load symbols from previous pass
$2=="sym" {
prevsym[$1]=int($3)
#printf("; %s (%s=%X)\n", $0,$1,prevsym[$1])
next
}
# Start parsing the line
# and set up per-line vars
{
label=$1
gsub(/:$/, "",label)
opn=2
split("", b, ":")
byteop=1
wordop=1
dwordop=1
}
# no label on line! fixup
/^ / || /^\t/ {
label=""
opn=1
}
{
# implement local labels
if (substr(label,1,1)==".") {
label=plabel label
} else if (label) {
plabel=label
}
# take note if we got a instruction size specifier
op=$(opn)
if (op in prefix) {
push_byte(prefix[op])
opn=opn+1
op=$(opn)
}
if($(opn+1)=="byte" || $(opn+1)=="short") {
wordop=0
dwordop=0
opn++
} else if ($(opn+1)=="word" || $(opn+1)=="near") {
byteop=0
dwordop=0
opn++
} else if ($(opn+1)=="dword" || $(opn+1)=="far") {
byteop=0
wordop=0
opn++
}
split("", a, ":")
c=0
for (i=opn+1;i<=NF;i++) {
if (substr($(i),1,1)==";") break
a[++c]=$(i)
if (substr($(i),1,1)=="\"") {
do {
i++
j=index($(i), "\"")
if (j) {
a[c]=a[c] " " substr($(i), 1, j)
break
} else {
a[c]=a[c] " " $(i)
}
} while($(i))
} else {
gsub(/,$/, "", a[c])
}
}
op1=a[1]
op2=a[2]
# pre-estimate if operand could be encoded as modrm
rm1=(op1 in r16) || (op1 in r8) || substr(op1,1,1)=="["
rm2=(op2 in r16) || (op2 in r8) || substr(op2,1,1)=="["
# if byte register in operands, it cant be a word or dword operation
if (op1 in r8 || op2 in r8) {
wordop=0
dwordop=0
}
# if word register in operands, it cant be a byte or dword operation
if (op1 in r16 || op2 in r16 || op2 in sreg) {
byteop=0
dwordop=0
}
}
# the source line is parsed by here:
# - op: opcode name
# - a: array of operands, starting with 1
# - c: number of operands
# - byteop, wordop, dwordop: test before encoding, all 1 per default
# pseudo-opcodes
op=="cpu" {
next
}
op=="org" {
pos=crit(a[1])
submit(pos);next
}
op=="equ" {
val=crit(a[1])
submit(val);next
}
op=="db" {
for(i=1;i<=c;i++) {
if (substr(a[i],1,1)=="\"") {
for(j=2;j<length(a[i]);j++) {
push_byte(_ord_[substr(a[i],j,1)])
}
} else push_byte(imm(a[i]))
}
}
op=="dw" {
for(i=1;i<=c;i++) push_word(imm(a[i]))
}
# arithmetics: ADD, SUB, XOR etc
op in alu {
push_op_modrm(alu[op]*8)
if (!hex) {
size=push_op_fixed_spare(0x80, alu[op])
if (size==1) {
push_byte(imm(op2))
} else if (size==2) {
push_word(imm(op2))
}
}
}
# no idea why this made this extra, this is a AND without storing the result
op=="test" {
push_op_modrm(132) # 84
if (!hex) {
size=push_op_fixed_spare(246, 0)
if (size==1) {
push_byte(imm(op2))
} else if (size==2) {
push_word(imm(op2))
}
}
}
op=="sar" && op2=="1" {
push_op_fixed_spare(208, 0) # D0 /0
}
op=="inc" && rm1 {
push_op_fixed_spare(254, 0) # FE /0
}
# MOV variants
op=="mov" {
# modrm <-> reg
if (rm1 && op2 in r8) {
push_byte(136) # 88
push_modrm(op1, r8[op2], r8)
} else if (rm1 && op2 in r16) {
push_byte(137) # 89
push_modrm(op1, r16[op2], r16)
} else if (op1 in r8 && rm2) {
push_byte(138)
push_modrm(op2, r8[op1], r8)
} else if (op1 in r16 && rm2) {
push_byte(139)
push_modrm(op2, r16[op1], r16)
# modrm <-> sreg
} else if (rm1 && op2 in sreg) {
push_byte(140)
push_modrm(op1, sreg[op2], r16)
} else if (rm2 && op1 in sreg) {
push_byte(142)
push_modrm(op2, sreg[op1], r16)
# reg <- imm
} else if (op1 in r8) {
push_byte(176+r8[op1])
push_byte(imm(op2))
} else if (op1 in r16) {
push_byte(184+r16[op1])
push_word(imm(op2))
# modrm <- imm
} else if (byteop && rm1) {
push_byte(198)
push_modrm(rm1, 0, r16)
} else if (wordop && rm1) {
push_byte(199)
push_modrm(rm1, 0, r16)
}
}
op=="push" && op1 in r16 {
push_byte(80+r16[op1])
}
op=="pop" && op1 in r16 {
push_byte(88+r16[op1])
}
op=="int" && op1=="3" { # CC breakpoint
push_byte(204)
}
op=="int" { # CD
push_byte(205)
push_byte(imm(op1))
}
op=="jmp" {
val=imm(op1)-(pos+2)
if (val>-127 && val<128 && ecrit) {
push_byte(235)
push_signed_byte(val)
} else {
push_byte(233)
push_word(val-1)
}
submit(pos);next
}
op=="call" && wordop {
push_byte(232)
push_word(imm(op1)-(pos+3))
}
op=="neg" {
push_op_fixed_spare(246, 3)
}
# opcodes with rel8 encoding
op in ops_rel8 && byteop && c==1 {
push_byte(ops_rel8[op])
push_signed_byte(imm(op1)-(pos+2))
}
# opcodes without arguments
op in ops_sb { push_byte(ops_sb[op]) }
{
if (!hex) err("no encoding found")
submit(pos)
}
END{
if (of=="hex") printf("\n")
if (errors) exit(1)
}