// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // JSONenums is a tool to automate the creation of methods that satisfy the // fmt.Stringer, json.Marshaler and json.Unmarshaler interfaces. // Given the name of a (signed or unsigned) integer type T that has constants // defined, stringer will create a new self-contained Go source file implementing // // func (t T) String() string // func (t T) MarshalJSON() ([]byte, error) // func (t *T) UnmarshalJSON([]byte) error // // The file is created in the same package and directory as the package that defines T. // It has helpful defaults designed for use with go generate. // // JSONenums is a simple implementation of a concept and the code might not be // the most performant or beautiful to read. // // For example, given this snippet, // // package painkiller // // type Pill int // // const ( // Placebo Pill = iota // Aspirin // Ibuprofen // Paracetamol // Acetaminophen = Paracetamol // ) // // running this command // // jsonenums -type=Pill // // in the same directory will create the file pill_jsonenums.go, in package painkiller, // containing a definition of // // func (r Pill) String() string // func (r Pill) MarshalJSON() ([]byte, error) // func (r *Pill) UnmarshalJSON([]byte) error // // That method will translate the value of a Pill constant to the string representation // of the respective constant name, so that the call fmt.Print(painkiller.Aspirin) will // print the string "Aspirin". // // Typically this process would be run using go generate, like this: // // //go:generate stringer -type=Pill // // If multiple constants have the same value, the lexically first matching name will // be used (in the example, Acetaminophen will print as "Paracetamol"). // // With no arguments, it processes the package in the current directory. // Otherwise, the arguments must name a single directory holding a Go package // or a set of Go source files that represent a single Go package. // // The -type flag accepts a comma-separated list of types so a single run can // generate methods for multiple types. The default output file is t_string.go, // where t is the lower-cased name of the first type listed. THe suffix can be // overridden with the -suffix flag. // package main import ( "bytes" "flag" "fmt" "go/ast" "go/build" "go/format" "go/parser" "go/token" "io/ioutil" "log" "os" "path/filepath" "strings" "golang.org/x/tools/go/exact" "golang.org/x/tools/go/types" _ "golang.org/x/tools/go/gcimporter" ) var ( typeNames = flag.String("type", "", "comma-separated list of type names; must be set") outputSuffix = flag.String("suffix", "_jsonenums", "suffix to be added to the output file") ) func main() { flag.Parse() if len(*typeNames) == 0 { log.Fatalf("the flag -type must be set") } types := strings.Split(*typeNames, ",") // Only one directory at a time can be processed, and the default is ".". dir := "." if args := flag.Args(); len(args) == 1 { dir = args[0] } else if len(args) > 1 { log.Fatalf("only one directory at a time") } pkg, err := parsePackage(dir, *outputSuffix+".go") if err != nil { log.Fatalf("parsing package: %v", err) } var analysis = struct { Command string PackageName string TypesAndValues map[string][]string }{ Command: strings.Join(os.Args[1:], " "), PackageName: pkg.name, TypesAndValues: make(map[string][]string), } // Run generate for each type. for _, typeName := range types { values, err := pkg.valuesOfType(typeName) if err != nil { log.Fatalf("finding values for type %v: %v", typeName, err) } analysis.TypesAndValues[typeName] = values var buf bytes.Buffer if err := generatedTmpl.Execute(&buf, analysis); err != nil { log.Fatalf("generating code: %v", err) } src, err := format.Source(buf.Bytes()) if err != nil { // Should never happen, but can arise when developing this code. // The user can compile the output to see the error. log.Printf("warning: internal error: invalid Go generated: %s", err) log.Printf("warning: compile the package to analyze the error") src = buf.Bytes() } output := strings.ToLower(typeName + *outputSuffix + ".go") outputPath := filepath.Join(dir, output) if err := ioutil.WriteFile(outputPath, src, 0644); err != nil { log.Fatalf("writing output: %s", err) } } } type Package struct { name string files []*ast.File defs map[*ast.Ident]types.Object } // parsePackage parses the package in the given directory and returns it. func parsePackage(directory string, skipSuffix string) (*Package, error) { pkgDir, err := build.Default.ImportDir(directory, 0) if err != nil { return nil, fmt.Errorf("cannot process directory %s: %s", directory, err) } var files []*ast.File fs := token.NewFileSet() for _, name := range pkgDir.GoFiles { if !strings.HasSuffix(name, ".go") || strings.HasSuffix(name, skipSuffix) { continue } if directory != "." { name = filepath.Join(directory, name) } f, err := parser.ParseFile(fs, name, nil, 0) if err != nil { return nil, fmt.Errorf("parsing file %v: %v", name, err) } files = append(files, f) } if len(files) == 0 { return nil, fmt.Errorf("%s: no buildable Go files", directory) } // type-check the package defs := make(map[*ast.Ident]types.Object) config := types.Config{FakeImportC: true} info := &types.Info{Defs: defs} if _, err := config.Check(directory, fs, files, info); err != nil { return nil, fmt.Errorf("type-checking package: %v", err) } return &Package{ name: files[0].Name.Name, files: files, defs: defs, }, nil } // generate produces the String method for the named type. func (pkg *Package) valuesOfType(typeName string) ([]string, error) { var values, inspectErrs []string for _, file := range pkg.files { ast.Inspect(file, func(node ast.Node) bool { decl, ok := node.(*ast.GenDecl) if !ok || decl.Tok != token.CONST { // We only care about const declarations. return true } if vs, err := pkg.valuesOfTypeIn(typeName, decl); err != nil { inspectErrs = append(inspectErrs, err.Error()) } else { values = append(values, vs...) } return false }) } if len(inspectErrs) > 0 { return nil, fmt.Errorf("inspecting code:\n\t%v", strings.Join(inspectErrs, "\n\t")) } if len(values) == 0 { return nil, fmt.Errorf("no values defined for type %s", typeName) } return values, nil } func (pkg *Package) valuesOfTypeIn(typeName string, decl *ast.GenDecl) ([]string, error) { var values []string // The name of the type of the constants we are declaring. // Can change if this is a multi-element declaration. typ := "" // Loop over the elements of the declaration. Each element is a ValueSpec: // a list of names possibly followed by a type, possibly followed by values. // If the type and value are both missing, we carry down the type (and value, // but the "go/types" package takes care of that). for _, spec := range decl.Specs { vspec := spec.(*ast.ValueSpec) // Guaranteed to succeed as this is CONST. if vspec.Type == nil && len(vspec.Values) > 0 { // "X = 1". With no type but a value, the constant is untyped. // Skip this vspec and reset the remembered type. typ = "" continue } if vspec.Type != nil { // "X T". We have a type. Remember it. ident, ok := vspec.Type.(*ast.Ident) if !ok { continue } typ = ident.Name } if typ != typeName { // This is not the type we're looking for. continue } // We now have a list of names (from one line of source code) all being // declared with the desired type. // Grab their names and actual values and store them in f.values. for _, name := range vspec.Names { if name.Name == "_" { continue } // This dance lets the type checker find the values for us. It's a // bit tricky: look up the object declared by the name, find its // types.Const, and extract its value. obj, ok := pkg.defs[name] if !ok { return nil, fmt.Errorf("no value for constant %s", name) } info := obj.Type().Underlying().(*types.Basic).Info() if info&types.IsInteger == 0 { return nil, fmt.Errorf("can't handle non-integer constant type %s", typ) } value := obj.(*types.Const).Val() // Guaranteed to succeed as this is CONST. if value.Kind() != exact.Int { log.Fatalf("can't happen: constant is not an integer %s", name) } values = append(values, name.Name) } } return values, nil }